22 research outputs found

    A universal correction to higher spin entanglement entropy

    Full text link
    We consider conformal field theories in 1+1 dimensions with W-algebra symmetries, deformed by a chemical potential \mu for the spin-three current. We show that the order \mu^2 correction to the Re'nyi and entanglement entropies of a single interval in the deformed theory, on the infinite spatial line and at finite temperature, is universal. The correction is completely determined by the operator product expansion of two spin-three currents, and by the expectation values of the stress tensor, its descendants and its composites, evaluated on the n-sheeted Riemann surface branched along the interval. This explains the recently found agreement of the order \mu^2 correction across distinct free field CFTs and higher spin black hole solutions holographically dual to CFTs with W-symmetry.Comment: Version accepted for publication as Rapid Communications in Phys. Rev. D. Included an expanded discussion of the prescription used for contact terms in relevant integrals; typos correcte

    GTB – An Online Genome Tolerance Browser

    Get PDF
    BACKGROUND: Accurate methods capable of predicting the impact of single nucleotide variants (SNVs) are assuming ever increasing importance. There exists a plethora of in silico algorithms designed to help identify and prioritize SNVs across the human genome for further investigation. However, no tool exists to visualize the predicted tolerance of the genome to mutation, or the similarities between these methods. RESULTS: We present the Genome Tolerance Browser (GTB, http://gtb.biocompute.org.uk): an online genome browser for visualizing the predicted tolerance of the genome to mutation. The server summarizes several in silico prediction algorithms and conservation scores: including 13 genome-wide prediction algorithms and conservation scores, 12 non-synonymous prediction algorithms and four cancer-specific algorithms. CONCLUSION: The GTB enables users to visualize the similarities and differences between several prediction algorithms and to upload their own data as additional tracks; thereby facilitating the rapid identification of potential regions of interest. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1436-4) contains supplementary material, which is available to authorized users

    An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome

    Get PDF
    Background: Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results: We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions: FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome

    Towards Deep Cellular Phenotyping in Placental Histology

    Full text link
    The placenta is a complex organ, playing multiple roles during fetal development. Very little is known about the association between placental morphological abnormalities and fetal physiology. In this work, we present an open sourced, computationally tractable deep learning pipeline to analyse placenta histology at the level of the cell. By utilising two deep Convolutional Neural Network architectures and transfer learning, we can robustly localise and classify placental cells within five classes with an accuracy of 89%. Furthermore, we learn deep embeddings encoding phenotypic knowledge that is capable of both stratifying five distinct cell populations and learn intraclass phenotypic variance. We envisage that the automation of this pipeline to population scale studies of placenta histology has the potential to improve our understanding of basic cellular placental biology and its variations, particularly its role in predicting adverse birth outcomes.Comment: Updated MRC funding material. Corrected typo that suggested ensembling and Inception accuracy were the same (updated to reflect the fact the ensemble model is 1% better than previously reported

    Asymptotic symmetries and thermodynamics of higher spin black holes inAdS3

    Get PDF
    We study black holes carrying higher spin charge in AdS3 within the framework of SL(N, R) x SL(N, R) Chern-Simons theory. Focussing attention on the N=4 case, we explicitly analyze the asymptotic symmetry algebra of black hole solutions with a chemical potential for spin-four charge. We demonstrate that the background describes an RG flow between an IR fixed point with W_4 symmetry and a UV fixed point with W-symmetry associated to a non-principal embedding of sl(2) in sl(4). Matching Chern-Simons equations with Ward identities of the deformed CFT, we show that the UV stress tensor is twisted by a certain U(1) current, and the flow is triggered by an operator with dimension 4/3 at the UV fixed point. We find independent confirmation of this picture via a consistent formulation of thermodynamics with respect to this UV fixed point. We further analyze the thermodynamics of multiple branches of black hole solutions for N=4,5 and find that the BTZ-branch, dominant at low temperatures, ceases to exist at higher temperatures following a merger with a thermodynamically unstable branch. We also point out an interesting connection between the RG flows and generalized KdV hierarchies.Comment: References added, version published in Phys. Rev
    corecore